THE ENZYME'S PERFECT COMPONENTS



Enzymes generally consist of two parts: the apoenzyme, and the coenzyme. The apoenzyme determines enzymes' characteristics and is the protein structure that makes one enzyme different from another. In other words, the types and arrangement of the enzyme's amino acids is determined in this region. The coenzyme gives the enzyme its catalytic abilities.

The detail, fineness and complexity observed down to the very smallest part of the cell is equally striking in all the components that make up enzymes. In the micro-world composed of molecules, even enzymes, which can be discerned only by the use of advanced microscopes, have components with their own complex and astonishing features. Every minute element that goes to make up an enzyme, that permits it to function and bestows upon it a three-dimensional structure, is vital to the enzyme's survival. The removal of any one of these parts, or a change in its shape or location, will mean that the enzyme can no longer function.
Some enzymes, referred to as "simple enzymes," are composed wholly of protein. Other enzymes, however, consist of two separate parts, known as the apoenzyme and the coenzyme. The apoenzyme part is made up of large protein molecules, and this section determines the nature of the enzyme. The protein structure that distinguishes this enzyme from all others—in other words, the types and arrangement of amino acids—is determined in this region.

The coenzyme is that part which gives the enzyme is catalytic quality, the part that enables it to serve as a catalyst. By themselves, apoenzymes exhibit no catalytic features. In the same way, although coenzymes endow the enzyme with its catalytic activity, coenzymes have virtually no effect on their own. Both components need to be present together in order for the enzyme to be active and functional.



Above: This three-dimensional computer image of an enzyme shows the enzyme structure and the cavity in the active site into which the substrate will fit. The substrate is a complete match, both chemically and structurally, for the special region in the active site. Left: An illustration setting out the compatibility between substrate and enzyme.

The coenzyme section permits the bonding between the enzyme and the substrate. Basically, it is the portion of the enzyme that does the work. All vitamins serve as the coenzyme part of the enzyme in the cell.21 For example, Vitamin A is part of the enzyme that carries out reactions involved in vision. Vitamin A completes the enzyme protein by serving as a coenzyme and sets it in motion in order to carry out the processes that enable the eye to see. If Vitamin A is absent, even if all the mechanisms that permit sight are present, the result is night blindness.22 Vitamin C, on the other hand, serves in synthesizing the protein collagen that binds our tissues together.

Minerals also act as enzymes' coenzymes. Calcium, magnesium, potassium and zinc are essential for some enzymes to function. For example, zinc is essential to the DNA polymerase enzyme, which we shall be examining in more detail in due course; and nickel is essential as a side chain for the enzyme urease. In addition to these basic elements, enzymes may become functional with the presence of many other molecules. The Illinois University biologist Dr. Gary Parker, who was formerly an evolutionist but who is now an advocate of the fact of creation, makes this remark about the enzymes' indispensable components:

When it comes to "translating" DNA's instructions for making proteins, the real "heroes"' are the activating enzymes. Enzymes are proteins with special slots for selecting and holding other molecules for speedy reaction. Each activating enzyme has five slots: two for chemical coupling, one for energy (ATP), and most importantly, two to establish a non-chemical three-base "code name" for each different amino acid R-group. And that is not the end of the story. The living cell requires at least 20 of these activating enzymes I call "translases," one for each of the specific R-group/code name (amino acid/tRNA) pairs. Even so, the whole set of translases (100 specific active sites) would be (1) worthless without ribosomes (50 proteins plus rRNA) to break the base-coded message of heredity into three-letter code names; (2) destructive without a continuously renewed supply of ATP energy to keep the translases from tearing up the pairs they are supposed to form; and (3) vanishing if it weren't for having translases and other specific proteins to re-make the translase proteins that are continuously and rapidly wearing out because of the destructive effects of time . . . on protein structure! 23

An enzyme is an irreducibly complex molecule, all of whose components work together and must be present at the same time. When you remove any single component, the system will not just suffer minor damage but will cease to function. An enzyme has to exist together with all the systems within it, the amino acids, ribosome and all other organelles. Neither is it sufficient for it to exist with all its parts; it must be present in an environment containing the other molecules with which it will react and be suitable to the working conditions of that living environment. This all goes to make the enzyme a complex structure that Darwinists are absolutely unable to account for. It is impossible for even one single component of this perfect system to develop independently of the others, to wait for the others to come into being, and for all the parts that have arisen by chance to combine—again by chance.



All kinds of activity in the human body take place uninterruptedly and without error as a result of an appropriate substrate joining with the correct enzyme. This flawless activity requires an impressive molecular compatibility and constant control. Allah is the Creator and maintainer of this perfect system.

Moreover, certain enzymes are capable of functioning in different organisms with completely different characteristics. An enzyme devoid of consciousness and composed of inanimate atoms can assist in the human body's cell reproduction and also assist with the process of sight in another organism with a completely different structure and function. This is a literal miracle, because under normal circumstances, it is not possible for an enzyme to depart from its own normal working conditions, adapt to others and still continue to function. Even the enzymes in the human stomach are unable to change their working environment and operate in the muscles or the kidneys. This shows that the same enzymes were specially created for different life forms. It is Allah, the Lord of all the knowledge in the worlds, Who creates them in such a way as to know how they will function in which body and Who endows them with different functions, despite giving them the same appearance. The way that an enzyme knows how it must work in the human body and yet assumes the functions determined for it in another creature's body with no confusion arising is one of the awe-inspiring works of Almighty Allah.

That some enzymes can serve different functions in different organisms does not alter the fact that very different enzymes are constantly at work in all living things. It will be useful to recall that in addition to the 1 million living species on Earth, there are some 10 million more that have become extinct. Bearing these figures in mind, the variety of enzymes specially created for each living species is really astounding.

The late Isaac Asimov, one of the 20th century's best known writers on science, describes this great variety of proteins possessed by living things:

Now, almost each of all the thousands of reactions in the body is catalyzed by a specific enzyme . . . a different one in each case . . . and every enzyme is a protein, a different protein. The human body is not alone in having thousands of different enzymes—so does every other species of creature. Many of the reactions that take place in human cells also happen in the cells of other creatures. Some of the reactions, indeed, are universal, in that they take place in all cells of every type. This means that an enzyme capable of catalyzing a particular reaction may be present in the cells of wolves, octopi, moss, and bacteria, as well as in our own cells. And yet each of these enzymes, capable though it is of catalyzing one particular reaction, is characteristic of its own species. They may all be distinguished from one another. It follows that every species of creature has thousands of enzymes and that all those enzymes may be different. Since there are over a million different species on earth, it may be possible—judging from the enzymes alone—that different proteins exist by the millions!24

Recall that in addition to all this, enzymes work in a completely interconnected system. One enzyme merely initiates an event, and countless other enzymes subsequently become involved. During these stages, known as the metabolic pathway, there is perfect coordination and control among all the enzymes. But in order for this system to operate fully, it is vital that the enzymes setting one another in motion should know their tasks and the exact timings thereof.



Enzymes function within a completely interdependent system. An enzyme merely initiates an event, before handing over its task to countless other enzymes that become involved. During this series of reactions, known as the metabolic pathway, there is enormous cooperation and control among different enzymes. All the enzymes in the metabolic pathway are inspired with a complete knowledge of their tasks and timings by Allah.

An enzyme inside a particular metabolic pathway uses the product previously manufactured by another enzyme as its new substrate. To put it another way, the results of a reaction carried out by one enzyme is necessary in order for another enzyme to initiate its own reaction. When the whole chain has been completed, the final product emerging is the inhibitor of one of the enzymes that initiated the chain—in other words, it prevents its operation. In this way, the production within the entire chain is balanced. For example, the enzyme amylase turns starch into maltose, which the enzyme maltase then converts into glucose. Eleven enzymes become involved one after the other and eventually, glucose is transformed into lactic acid.

Another similar awe-inspiring chain can also be seen in the blood-clotting process, whose details we shall examine in due course. Thanks to the features in this metabolic pathway that let enzymes set one another in motion, the system functions with a perfect timing and division of labor. Clotting takes place over the wound site in just the right way. Evolutionists are unable to account for the existence of just one single enzyme, and have absolutely no way of explaining this entire "irreducibly complex" chain established by a number of interconnected enzymes, no component of which can be removed. They claim that chance carried out these extraordinary processes, shaping all their scenarios in the light of that preconception.

In fact, however, these scenarios have no scientific or logical foundation. The evolutionist physicist and astronomer Fred Hoyle openly states this fact:

I don't know how long it is going to be before astronomers generally recognize that the combinatorial arrangement of not even one among the many thousands of biopolymers on which life depends could have been arrived at by natural processes here on the Earth. Astronomers will have a little difficulty in understanding this because they will be assured by biologists that it is not so, the biologists having been assured in their turn by others that it is not so. The ‘others' are a group of persons who believe, quite openly, in mathematical miracles. They advocate the belief that tucked away in nature, outside of normal physics, there is a law which performs miracles (provided the miracles are in the aid of biology).25

All evolutionist claims regarding the development of life are based upon deceptions. They seek to expand this method of deception and to use it on readers and listeners. Yet the one truth that evolutionists are unwilling to understand is that chance cannot work miracles. Chance does not represent a mind, a consciousness or an intelligence. It is impossible for it to give rise to phenomena and functions that operate in any conscious manner. Allah is the Creator of all the astonishing and miraculous beauty on Earth.

Allah is the Creator of everything and He is Guardian over everything. The keys of the heavens and earth belong to Him. It is those who reject Allah's signs who are the losers. (Surat az-Zumar: 62-63)

Enzymes' Control Mechanisms



As reactions take place in the body, numbers and timings are kept under constant control. The products that emerge as a result are sufficient to meet all the body's requirements. Enzymes are synthesized at quite low levels until the cells require them. When cell demand rises, however, enzyme synthesis increases considerably. It is Allah, Creator of all things, Who determines the need in the body, controls every single enzyme and assgns each one its duty.

The thousands of enzymes inside a cell are in constant competition with one another for substrates. Each one is a part of a chain reaction or a link in a metabolic pathway; and different enzymes will compete for the same substrate. So complex is this system that keen organization is essential to determine the timing of each reaction and the speed at which it occurs.

For that reason, the sequence, number and timing of reactions are maintained under meticulous control. So well ordered is the catalytic activity of enzymes that the products emerging from their reactions are sufficient to meet all the cell's needs.26 There must be constant order if enzymes are to work together and carry out the requisite processes at such high speeds. All the stages are thus subject to strict control. Synthesizing reactions take place when a new product is needed in the cell, and destructive ones occur when molecules need to be eliminated. Generally speaking, enzymes are synthesized at low rates unless the cell has a particular need. If demand rises, however, new enzymes are synthesized at great speed.

Enzymes are also adapted to the equilibrium determined for them. The enzyme lipase, for example, breaks down fat, but also has the job of combining glycerin and fatty acids. Which reaction will take place is of great importance, because as energy is expended in one of the reactions performed, it is supplied by another. Any reaction requiring energy needs to occur at the same time as those producing energy, or else it must in some way be stored beforehand. The compound adenosine triphosphate (ATP for short) works just like a battery to conserve this energy.27

Enzyme control is established also by specialized inhibitors entering the equation. As will be examined in greater detail in due course, each enzyme has, in turn, its own inhibitor enzyme. These inhibitors establish an important balance inside the cell that prevents excessive production of enzymes.

Enzymes are not active until the need for them becomes felt. One example of this can be seen in the formation of purine and pyrimidine bases. Pyrimidines activate purine molecules, and equal quantities of both substances need to be present in the cell to enable the production of DNA and RNA. When a sufficient amount of purine forms, inhibitors halt further purine production by stopping the enzyme that releases it, and activate enzymes that initiate production of pyrimidine. In response to this, when pyrimidines halt their own enzymes, they also activate purine enzymes. The relationship between the synthesis of these two substances ensures that the same level of each is always maintained inside the cell.28

Regulatory systems constantly maintain the control system within each cell and make the requisite arrangements when the need arises. As you can see, it is not enough for enzymes merely to accelerate reactions and to obtain the substances that the body requires. Your body is so complex that while a series of reactions takes places uninterruptedly, their timing also needs to be determined at the very same instant. In regard to this timing, it is vitally important that the amounts produced should be regulated—neither a milligram too much or too little. Precautions must be taken so that there is high production when the body needs it, but that the production can be halted when it is no longer necessary...

First, of course, that need must be determined. So perfect is this determination that an enzyme "knows" and reacts in as little as 1/1000 second. All these occurrences continue on in an error-free manner, in complete order, without you ever being aware of what's happening.

Within the human body, there is a miraculous system wherein everything is planned and arranged to perfection. Every component monitors and appears to encode everything else. The presence of one component is essential to the functioning of all the others, and thus the chain system carries on its work. The human body is a perfect machine whose marvels are displayed at every point, right down to the smallest organelles inside the cell. The reason for this is that all components have bowed to Allah. All the elements comprising this system operate through His inspiration, performing the tasks determined by Him in the place determined by Him. It is Almighty Allah Who determines how much of which enzyme is required and how production should take place. All the control mechanisms discussed operate solely by Allah's leave, and all the systems that encode proteins and regulate enzymes are also under His control. Unconscious molecules clearly have no power to carry out the processes that take place in the cell every second. That power belongs to Allah alone.

Allah's sublime artistry prevails in all things. A person can see this everywhere he looks, in every cell he examines. Because this is the sole truth that prevails throughout the Earth and heavens. Allah has revealed this in another verse:

The Unseen of the heavens and the Earth belongs to Allah and the whole affair will be returned to Him. So worship Him and put your trust in Him. Your Lord is not unaware of what you do. (Surah Hud: 123)


Enzymes' Extraordinary Speed

Were it not for enzymes, a whole lifetime would not be enough for a single chemical reaction to take place. Reactions that would otherwise take hundreds of years to occur are so accelerated by enzymes that they do so not in hours or minutes, but in a matter of milliseconds. Enzymes can accelerate a reaction by up to 1014 times.29 This is a number consisting of 1 followed by 14 zeros. Were it not for that speed, a simple five-second process, such as the reading of this sentence, would last 1,500 years. 30

Were it not for enzymes, processes that cells can perform in seconds would take thousands of years. To put it more bluntly, life would be impossible. Enzymes have been charged with accelerating countless reactions essential for the vitality of any organism, to an extraordinary rapidity.



This diagram shows how reaction speed can increase as a result of enzyme involvement—which speed is essential to the survival of the human body. These superior abilities of enzymes are a manifestation of Allah's mercy towards human beings.

But what does an enzyme do to establish such speed? As we have already seen, enzymes reduce the energy needed for a reaction to take place. But just what is this activation energy? We can describe it thus: In terms of energy, under normal conditions, the most suitable molecule for carbon to combine with is carbon dioxide. When these two are present in the same environment they will act on one another and have a combustive effect. Yet even though these two substances are present in the same living body, they never combust. Although any book you are holding contains carbon and is in constant contact with carbon dioxide, it never suddenly bursts into flames. The reason for this is that the carbon-based molecules in living organisms and books have stable structures, and in the absence of new energy (i.e., heat) from outside, they cannot break those bonds and suddenly combust. New energy arriving from the outside in such a way as to destabilize the structure in question is called "activation energy." The activation energy needed to impair the stable structure we are discussing here—in other words for this book to ignite—is a burning match. For the molecules in the watery solution inside the cell, that heat energy is released as a result of the collisions of molecules around them.31 Enzymes are responsible for reducing the considerable energy released during these collisions.

In order to measure the speed of enzymes' activity, biochemists calculate the number of substrates an enzyme sets into reaction in the course of a second. This is known as the enzyme's turnover number, and this number varies for every individual enzyme. Many enzymes have turnover numbers in the tens or even hundreds; a few even have turnover numbers expressed in thousands.

One example is carbonic anhydrase. Nearly half the carbon dioxide produced by tissues is carried in a dissolved state to the lungs via the bloodstream. For this process, the level of carbon dioxide solution in the liquid environment is rather high for which reason carbonic anhydrase catalyses the system, speeding it up by 10 million times, setting 600,000 water molecules and an equal number of carbon dioxide molecules into reaction every second. In other words, the enzyme enters into a reaction every 2 microseconds—a truly astonishing speed. To make this more comprehensible (and dramatic!), if you expanded a second out to the length of a whole year, a microsecond would last the same amount of time as a soft-drink commercial. 32



After the enzyme becomes involved in a reaction, wide-ranging processes take place, at an extraordinary speed. For example, the speed at which the enzyme carbonic anhydrase enters a reaction is just 2 microseconds. If you stretched out a second to the length of a whole year, 1 microsecond lasts just as long as a soft-drink commercial.

The breaking down of a molecule, the digestion of a foodstuff, or the elimination of a waste product is due to the enzymes that function every instant, non-stop, by Allah's leave. As you shall shortly see, the working of special digestive enzymes permits food to be digested in the stomach and intestines. The process of human digestion lasts between three and six hours, depending on the particular food involved. Were it not for enzymes, however, it would take you more than 30 years to digest a single meal!33 To make this enormity clearer, just 30 grams of pepsin, one of the chief elements in digestion, can digest 2 tons of egg white.34Were it not for enzymes, you would need years to digest even a single egg; and a normally five-second reaction might last up to 1,585 years. For example, it would take you 115,000 years to read this page!35

Regarding this amazing speed of enzymes, the late evolutionist Carl Sagan gave the following description:
A living cell is a marvel of detailed and complex architecture. Seen through a microscope there is an appearance of almost frantic activity. On a deeper level it is known that molecules are being synthesized at an enormous rate. Almost any enzyme catalyzes the synthesis of more than 100 other molecules per second. In ten minutes, a sizeable fraction of total mass of a metabolizing bacterial cell has been synthesized. The information content of a simple cell had been estimated as around 1012 bits, comparable to about a hundred million pages of the Encyclopedia Britannica. 36

As you can see, a single cell containing more information than an Encyclopaedia Britannica consisting of some 100 million pages, is produced in 10 minutes, by the leave and under the supervision of Allah. The enzymes created flawlessly by Allah make this production possible.

Every enzyme accelerates reactions at different speeds. Actually, a major miracle lies in the information compressed into just that one sentence. Some of the body's reactions need to take place more quickly than others. With the help of catalyzers, for example, some reactions may last just one second. In the absence of catalyzing enzymes, this reaction would take 108 seconds, or approximately 3 years. In the presence of an enzyme, however, some reactions may take 10 minutes to achieve equilibrium. This is a relatively slow-working reaction in the world of enzymes, but in the absence of a catalyst, it would take 109 minutes to achieve equilibrium—a number of roughly 2,000 years.37



Enzymes accelerate reactions to an extraordinary degree. Were it not for enzymes' assistance, a 5-second reaction might last 1,585 years. And it would take you 115,000 years just to read this page.

In the world of enzymes, the speed required for reactions that need to take place so quickly might have a damaging effect on reactions that need to take place relatively slowly. The enzyme that copies DNA, for example, cannot work any faster, while those enzymes that break down toxic substances in the body must not slow down at all. Also, some enzymes give off hydrogen peroxide as a byproduct of their reactions. And as we know, this is a combustive substance, powerful enough to dissolve and destroy all the organs in the human body. That such a dangerous substance emerges as the byproduct of cell metabolism is astonishing, but also potentially hazardous. For that reason, hydrogen peroxide needs to be eliminated before it can damage any of the body's tissues.

Therefore, an important precaution has been taken for the body. The enzymes that produce hydrogen peroxide are kept inside special organelles known as peroxisomes. These organelles contain a high level of the enzyme catalase, which breaks down the hydrogen peroxide before it can spread to body tissues. 38This enzyme can break down up to 5 million hydrogen peroxide molecules a minute, turn them into harmless water and oxygen. The activation energy required for this is 18,000 calories per molecule. If the enzyme catalase did not undertake this function, and if the iron atom attempted the task by itself, it would take some 300 years to break down a single hydrogen peroxide molecule.39 In order to break down 5 million hydrogen peroxide molecules, an activation energy of 5,000,000 x 18,000 = 90,000,000,000 calories would be necessary. Not all the food consumed and all the energy released by all the living things on Earth would be enough to provide that level of energy.40

Duane T. Gish expresses the importance of the enzyme catalase and how it could not have come into being by chance:

There could be no selection of any kind in an inanimate environment. For example, hydrogen peroxide, highly toxic to living cells, is a metabolic product of cellular activity. We therefore possess an incredibly efficient enzyme for catalyzing the breakdown of hydrogen peroxide. This enzyme, catalase, has a turnover rate of several billion per minute. Because of the high toxicity of hydrogen peroxide, our cells require an exceedingly efficient enzyme to catalyze its decomposition. We certainly couldn't survive without this enzyme.41

But what would happen if enzymes could not accelerate reactions that quickly? Would it be enough for them to carry out in, say, 100 years a reaction that in their absence would last 10,000 years in their absence? Would they be of any use to us if they performed their tasks in 10 years instead of a century? Leaving aside years, months and hours, could we stay alive if a single reaction lasted just 10 minutes?

In fact, an interruption of just a millisecond—let alone one of 10 minutes' duration—in the phase of the catalysis would be enough to impede the function in question. For example, if the enzyme catalase operated at the speed of the DNA polymerase enzyme, this would let all the hydrogen peroxide molecules escape to spread to the nearby cells, thus leading to their death.

The enormous time difference involved between the absence and presence of enzymes makes clear just what an important task these crucial proteins undertake. This phenomenon is far too extraordinary to permit any hint of coincidence. Indeed, it is even impossible for even a conscious human being to design and implement so complex a system.

A great many other details need to be considered here. How is it that every enzyme has a different accelerative force? How do enzymes know that they must carry out every reaction at a different speed? It is impossible for enzymes to know on their own, what purpose a given reaction serves and determine how quickly they need to accelerate it, and equally impossible for them to communicate that speed to other enzymes. It is wholly impossible for them to acquire all these characteristics by chance. Coincidence is supposed to be an event that takes place unconsciously and due to random influences, and any chance impact on a structural unit as complex as the cell will cause it to stop working and thus, to the death of the cell. Therefore, all the systems within the cell are controlled, just like the enzyme system—but that control does not lie with the cell itself nor with the organelles inside it.

There is only one explanation for the apparently conscious processes that are carried out in this microscopic system composed of unconscious atoms. If all of these literally know what they need to do, never make a mistake in their work, and maintain that same perfection in all humans from one generation to the next, then they exhibit the intelligence and flawlessness manifested in them. That intelligence and perfection obviously belong to Allah, their Creator. Since Allah wills enzymes to keep working inside the human body in such a perfect manner, and for each to function with different molecules and to engage in constant activity to keep humans alive, these molecules can successfully perform processes that require consciousness. Enzymes are all blessings from Allah, the Creator of all the entities on Earth, human beings, and the universe they inhabit—in short, of everything. Allah acquaints us with His creative artistry through all the perfection on Earth and through His verses. One of our Lord's verses reads:

Allah is He Who raised up the heavens without any support—you can see that—and then established Himself firmly on the Throne. He made the Sun and Moon subservient, each running for a specified term. He directs the whole affair. He makes the signs clear so that hopefully you will be certain about the meeting with your Lord. (Surat ar-Ra‘d: 2)


An Important Discovery Regarding Enzyme Speed

One of the most striking pieces of research into the speed of enzymes was carried out by Richard Wolfenden, a professor of biochemistry, biophysics and chemistry at the University of North Carolina at Chapel Hill and also a member of National Academy of Sciences. A statement he issued in 1998 helps us obtain a better understanding of the extraordinary speed possessed by enzymes. In his earlier research, Prof. Wolfenden calculated that in water containing no enzymes—in other words, uncatalyzed water—the biological transformation essential in the formation of the fundamental building blocks of DNA and RNA would take 78 million years. But his subsequent discovery was even more astonishing. In his own words:

"Now we've found one that's 10,000 times slower than that . . . Its half-time—the time it takes for half the substance to be consumed—is 1 trillion years, 100 times longer than the lifetime of the universe. Enzymes can make this reaction happen in 10 milliseconds."42

Wolfenden published this discovery, made together with Chetan Lad and Nicholas H. Williams from Sheffield University in England, on the National Academy of Sciences website on 29 April 1998.

The enzyme that attracted Wolfenden's attention was phosphatase. The catalytic power of phosphatase increased the speed of reaction in water of a chemical group known as phosphate monoesters to an extraordinary degree. The phosphatase enzymes acting on these monoesters regulated the molecular cross-talk within cells and the cell signaling pathways. Wolfenden sets out the importance of esters as follows:

We have esters floating around in our cells with all kinds of functions. Every aspect of cell signaling follows the action of the type of phosphatase enzyme that breaks down phosphate monoesters. Other phosphatases highlighted in the study for their catalytic power help mobilize carbohydrates from animal starch and play a role in transmission of hormonal signals.43



In the absence of phosphatase enzymes, which enable reactions to occur in 10 milliseconds, it would take 1 trillion years to consume just half the substance entering the reaction. That figure is 100 times greater than the age of the universe.

Wolfenden went on to express his surprise in the face of this discovery saying that the enzymes they studied in this report were fascinating for they exceeded all other known enzymes in their power as catalysts and that they had only begun to understand how to speed up reactions with chemical catalysts, and no one had even come within shouting distance of producing their catalytic power.

The reaction that would take 1 trillion years in the absence of enzymes made Wolfenden, himself an evolutionist, appreciate their astounding quality. This number achieved is an incomprehensible time period. As Wolfenden explained:
This number puts us way beyond the known universe in terms of slowness. [The enzyme reaction] is 21 orders of magnitude faster than the uncatalyzed case. And the largest we knew about previously was 18. We've approached scales than nobody can grasp.44

If a protein—a combination of several amino acids—can accelerate a reaction that would last 1 trillion years into just a few milliseconds, then its significance is truly extraordinary. If everyone in the world cannot achieve something that a single protein manages, much less fully understand how this comes about, then there is a perfection here that they must accept. Only Allah has the power to create this perfection.

In one verse, Allah tells us that He has created all things within an order:

He to Whom the kingdom of the heavens and the Earth belongs. He does not have a son and He has no partner in the Kingdom. He created everything and determined it most exactly. (Surat al-Furqan: 2)

In another verse, He informs us that all things are under His control:

[Hud said,] "I have put my trust in Allah, my Lord and your Lord. There is no creature He does not hold by the forelock. My Lord is on a Straight Path." (Surah Hud: 56)

Allah is He Who creates all entities, Who gives them the most perfect form and keeps them constantly under His control. Allah has endowed them with amazing features and matchless forms. Those who ignore this fact have no other alternative explanation to offer, however. To claim that these things are all a matter of chance, or to seek to portray them as miracles of so-called evolution, will not alter this truth in the slightest. Those who make such claims are clearly aware of the extraordinary state of affairs that confronts them. Chance cannot give rise to a living thing, nor can it give rise to a single living cell, a single enzyme within that cell, nor the chain reaction carried out by that enzyme. Allah creates all of these, and the work of each one displays His greatness and the perfection in His creations.


Say: "Look at what there is in the heavens and on the earth." But Signs and warnings are of no avail to people who have no faith.
(Surah Yunus: 101)

Enzymes Are Different from Hormones, Despite Having Similar Structures

Both enzymes and hormones are proteins, both encoded by DNA. Both fit their targets like a key fits a lock, and their shapes are of great importance in terms of their functions. However, hormones are informational molecules, manufactured in various regions of the body and forwarded to other regions by being released into the bloodstream. In this way, they signal for events to take place in far distant parts of the body. Growth hormone, for instance, sends out the necessary signals for cell division and bone growth. It has its effect only on cells that have proper receptors, or that have docking stations on their surfaces. Enzymes, on the other hand, are catalysts. They arrange for chemical reactions to be accelerated so that metabolism can take place at a useful rate.45



Enzymes and hormones are both proteins, both sharing the three-dimensional form unique to proteins. They differ from each other only in terms of function. It is Almighty Allah, our Lord, Who inspires these different tasks at the sub-cellular level.

Hormones are very similar, though unlike enzymes, they do not constantly enter into and exit from chemical reactions. In addition, hormones have long-term effects on the organs they reach via the bloodstream. For example, if you do become hungry or thirsty while reading this article, these sensations are completely hormonal in origin. Hormones released from specific regions of the body reach the brain and begin setting up a sensation of hunger, making you want to eat. (For detailed information, see Harun Yahya, The Miracle of Hormones.)

What distinguishes these two proteins, which are almost identical in their structure and working conditions? Although they have the same characteristics and similar geometrical shapes, proteins manufactured in the body suddenly begin working as either enzymes or hormones. The body has no conscious apparatus to determine that one should act as a catalyst while the other should transmit messages. All the other organs in the body are no different from protein and fats. It is impossible for them to have intelligence, be able to plan and share labor, identify missing components in the metabolism and to engage in production accordingly. It is Almighty Allah Who tells the proteins produced what to do, how to behave and how to establish communications with one another. It is He Who fully knows the body He has created, what takes place in it and the reasons behind its operations. He determines the body's needs and how and where these will be satisfied. He inspires each with its own task and tells each one how to behave. Every structure in the body behaves accordingly. It is His inspirational direction that makes enzymes different from hormones. Allah creates whatsoever He wishes out of nothing. Our Lord has revealed this fact in a verse:

It is He Who created the heavens and the Earth with truth. The day He says "Be!" it is. His speech is Truth. The Kingdom will be His on the Day the Trumpet is blown, the Knower of the Unseen and the Visible. He is the All-Wise, the All-Aware. (Surat al-An‘am: 73)


Enzymes Are Constantly at Work in Our Bodies

The human body is known to contain more than 2,000 enzymes. 46 Thanks to them, we can remain alive. The way we eat, breathe, hear sounds, see what is going on around us—in short, all the systems in our bodies function by way of enzymes. When you remove one enzyme from the system, the functions it performs are also eliminated. Nothing else can perform the tasks carried out by these proteins too small to be seen by the naked eye.

So exactly what is it that enzymes do, whose presence is so essential to the functions taking place in your own body and to the survival of other living things around you? If you leave a green banana on the windowsill for a few days, it will turn sweet and yellow. This process, which we call maturation, takes place thanks to enzymes. A dog buries a bone. When it digs it up again, that bone—which was previously very hard—has become softer and has assumed an edible texture. This too happens thanks to enzymes. If you place green tomatoes that are still on their stems under the Sun, shortly afterwards they turn red. This happens thanks to enzymes being set in motion by the Sun's light and heat. Seeds cannot sprout in the absence of enzymes. Fruit cannot mature, leaves cannot change color and we ourselves cannot come into being.


That is Allah, your Lord. There is no deity but Him, the Creator of everything. So worship Him. He is responsible for everything.
(Surat al-An‘am: 102)

In short, enzymes are one of the reasons why, by Allah's choosing, living things achieve life. 47Enzymes are responsible for all the chemical processes that take place in all our bodies' systems, and are important components of the immune system as well. We depend on enzymes in order to be able to eat and digest, just as we do in order to see, feel, hear, breathe and move. Enzymes play a leading role in blood coagulation, the functioning of the heart and circulatory system, the function of the liver and kidneys, the expulsion of toxic substances, the functioning of the brain, the distribution of hormones throughout the body, and in your being able to think and even dream. Enzymes convert the food you eat into small molecules that can enter your cells. These digested substances, spread throughout the entire body by entering the bloodstream, are transmitted to the cells by passing through their membranes. Thanks to enzymes, these ready-made components are converted into muscles, bones, nerves and secretory glands. Substances not used immediately are stored for future use, thanks to enzymes and the liver working together.

The transportation of foodstuffs in the body depends entirely upon enzymes. If they did not fully perform their tasks, you would suffer memory loss, be unable to think properly and would start suffering fatigue, because your brain would receive insufficient nutrients.48 However, such a problem never arises because under normal conditions, enzymes never neglect their duties, never neglect to evaluate the foodstuffs entering your body. They are aware of the importance of every nutrient, using every ingredient and wasting nothing.

Enzymes are constantly active inside the cells, breaking down, synthesizing and regulating. The division of labor among them is truly amazing. One enzyme uses phosphorus for bone building; another enables blood to clot, while still another bonds iron to red blood cells. Some enzymes carry out oxidation, combining other substances together with oxygen. Meanwhile, other enzymes eliminate carbon dioxide from the lungs; while still others are responsible for converting protein into fat, or sugar or carbohydrate into fat.49 The sperm cell has special enzymes that permit it to pierce the egg. Enzymes in the immune system take constant action against waste products and toxins in the blood and tissues.50

Still other enzymes carry out such chemical processes as breaking down sugar into carbon dioxide and water in a matter of seconds, hundreds or even thousands of times, non-stop throughout the entire course of your life.
An average of 40 separate reactions take place inside the cell every second, all by means of enzymes. But once they have accelerated reactions and discharged their duties, enzymes leave without themselves undergoing any changes and continue taking part in other reactions, and thus maintain a constant state of employment. This is a most important economy measure, since there is no need for enzymes to be manufactured constantly. They maintain their various stocks inside the body and continue to carry out their duties.

Enzymes heal wounds and cure infections. 51 They also clear away the dead cells that are casualties in the immune system's war against microbes. Once the war is over, destroyed microbes, antibody-microbe compounds and toxins are all eliminated as the result of the scrupulous activity of enzymes. If these wastes are not expelled from the body, they will cause congestion of the arteries.

Enzymes also seem aware of situations in which precautions need to be taken and know how to behave during emergencies. For example, animals that hibernate cannot use food to meet their energy requirements, so their bodies' enzymes behave with deliberation. They begin converting stored fats in the body into carbohydrates that will give off 52 —an action they do not take at other times. They make use of this privilege when the body cannot consume nutrients, and Allah inspires in them the knowledge of when they need to do so. Enzymes in the human body have also been created in such a way as to take relevant precautionary measures when necessary. For example, if someone eats nothing for a long time, enzymes inside the body convert fats into carbohydrates. This process is a precaution that enzymes take to preserve our bodies, and you are never even aware of the methods they employ to keep your body alive and healthy. These miraculous substances constantly perform countless tasks and precautionary measures in order to keep you alive, possessing abilities that transcend any human intelligence. It is Almighty Allah Who equips them with all these abilities. Allah calls upon people to reflect upon these facts they witness. Not to forget the blessings bestowed by Allah and to think deeply about these miraculous phenomena they see are some of human beings' most important responsibilities. Allah tells us of this in a verse:

Everything in the heavens and the earth belongs to Allah. He knows what you are engaged upon. On the Day when they are returned to Him, He will inform them of what they did. Allah has knowledge of all things. (Surat an-Nur: 64)


Enzymes' Working Conditions

Specific enzymes are charged with every chemical reaction in the body. Since enzymes do not perform one another's work, a special enzyme charged with a specific duty has to be present on site. If enzymes were used up and not renewed, there would be no other enzymes to replace them. As already mentioned, reactions also depend upon one another, rather like dominoes. If one reaction fails to occur because of the lack of an enzyme, then the whole chain will come to a halt. For example, the absence of even a single enzyme that supervises the new chain of DNA being copied will lead to faulty copying. Subsequent enzymes will be unable to perform their own functions, producing flawed or functionless DNA in the body.

Enzymes are able to operate only within a specific pH level and temperature—generally between 30 and 70 degrees Centigrade, which is known as "optimum temperature."53 This is a rather special temperature range, because the average internal temperature of the human body is 36.5 degrees C, an ideal level for human enzymes to work. Indeed, because of the sensitive conditions under which some enzymes work, they demand a much narrower temperature range. Therefore, the slightest change in body temperature can affect the functioning of these enzymes. When the body feels freezing cold or has high fever, the rate at which enzymes work declines, along with the number of processes they can perform. Some enzymes even die. (See Harun Yahya, The Miracle of the Immune System.) When the temperature rises by as much as 10oC, reaction speed doubles. To put that another way, increase in reaction speed is directly proportional to temperature. After this considerable rise, however, reaction speed suddenly slows to a standstill. Although reaction speeds show a sudden initial increase, this temperature is clearly not productive in terms of enzymes' working conditions. Although enzymes grow ineffective a little above optimum temperature, they can once again become effective when the temperature falls. But if that high temperature persists or even rises a little further, enzymes lose all their effectiveness, because they have a tertiary structure and at high temperatures, they lose that helical three-dimensional structure. The enzyme structure breaks down, their former order is destroyed, and as a result, they cease to function.

Enzymes also become functionless at low temperatures, but cold does not damage their structure. Efficacy is restored once the temperature returns to earlier levels. The frozen food industry makes considerable use of this fact.54 Foods are preserved for long periods by freezing, and when thawed, they regain much of their former nutritional value, thanks to the enzymes being reactivated.

Also important for enzymes, in addition to temperature, is the body's pH level. pH stands for "potential hydrogen," showing the concentration of hydrogen ions in a region or a solution. Concentration values can range between 1 and 14. A level of 7 indicates the presence of water and describes a neutral environment. Numbers higher than 7 indicate an alkaline environment, and numbers lower than 7 show that it is acidic. This distinction is of great importance for reactions taking place in a fluid environment, because while some molecules dissolve in water, others are unaffected by it and can dissolve only in acid.

Enzymes generally operate within a specific pH range, known as "optimum pH." All enzymes need an average pH level in order to be able to work, and some operate within a particular pH level appropriate to their own working conditions. For instance, pepsin—which breaks down proteins in the stomach—can work best only at a acidic pH of 2. Trypsin, secreted by the pancreas and which plays a role in protein digestion, works most efficiently at a pH of 8.5. But a powerfully acidic or alkaline environment will damage most enzyme's structure..55

Although enzymes demand highly sensitive working conditions, the living body possesses the ideal properties for these molecules to function. The fact that every one of the 2,000 types of enzymes in a living body can work in a manner appropriate to its environment shows that both body and the enzymes have been specially created. It is Allah Who creates the human body, Who determines the different conditions that apply in each of the body's different structures and Who creates enzymes accordingly. With His infinite knowledge, Allah has created all the conditions necessary for a human being to stay alive. It is impossible for these many enzymes to have come about or have become mutually compatible as the result of chance. His sublime artistry is revealed in verses:
He Who created the seven heavens in layers. You will not find any flaw in the creation of the All-Merciful. Look again—do you see any gaps? Then look again and again. Your sight will return to you dazzled and exhausted! (Surat al-Mulk: 3-4)